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Preface

The International Conference on Case-Based Reasoning (ICCBR) is the pre-eminent
international meeting on case-based reasoning (CBR). ICCBR 2007
(http://www.iccbr.org./iccbrO7/) was the seventh in this series, presenting the most
significant contributions in the field of CBR. The conference took place in Belfast,
Northern Ireland, UK, during August 13-16, 2007. ICCBR and its sister conferences
ECCBR (European Conference on Case-Based Reasoning) alternate every year.
ICCBR 2007 followed a series of six successful international conferences previously
held in Sesimbra, Portugal (1995); Providence, Rhode Island, USA (1997); Seeon,
Germany (1999); Vancouver, Canada (2001); Trondheim, Norway (2003); and Chi-
cago, Illinois, USA (2005). The European Conferences on Case-Based Reasoning
(ECCBR) were held as European workshops in Kaiserslautern, Germany (1993);
Chantilly, France (1994); Lausanne, Switzerland (1996); Dublin, Ireland (1998); and
Trento, Italy (2000); and as European conferences in Aberdeen, UK (2002); Madrid,
Spain (2004); and Lykia World, Turkey (2006).

Days one, two, and four comprised presentations and posters on theoretical and ap-
plied CBR research. In order to emphasize the importance of applications, the tradi-
tional industry day was converted into an Industry Program held on the second day, in
the middle of the conference. Day three was devoted to five workshops: Case-Based
Reasoning and Context-Awareness; Case-Based Reasoning in the Health Sciences;
Textual Case-Based Reasoning: Beyond Retrieval; Uncertainty and Fuzziness in Case-
Based Reasoning; and Knowledge Discovery and Similarity.

There were four distinguished invited speakers. Two speakers from the CBR com-
munity, David W. Aha (Naval Research Laboratory, USA) spoke about perceptions of
CBR, while Eva Armengol (IITA-CSIC, Spain) talked about usages of generalization
in CBR. Hans-Dieter Burkhard (Humboldt University, Germany) described the use of
cases in robotic soccer, and Larry Kershberg (George Mason University, USA) pre-
sented the role of XML databases in CBR. Thanks to their commitment and ideas.

The presentations and posters covered a wide range of topics, including adaptation,
planning, learning, similarity, maintenance, textual CBR, and recommender systems.
This volume includes 15 papers from oral presentations and 18 from posters. These
were chosen from a total of 64 submissions originating from 25 different countries. In
addition, the volume contains three papers from invited speakers. The accepted papers
were chosen based on a thorough and highly selective review process. Each paper was
reviewed and discussed by four reviewers and revised according to their comments.

There were many people who participated in making ICCBR possible. First of all,
David W. Patterson (University of Ulster, Northern Ireland, UK) —the Conference
Chair who had the initiative to propose ICCBR 2007. The organization team was very
diverse, having David C. Wilson (University of North Carolina, USA) and Deepak
Khemani (IIT Madras, India) as coordinators of the Workshop Program. Thomas
Roth-Berghofer (DFKI, Germany) chaired a Steering Committee for the Industry
Program that included Kareem S. Aggour (General Electric CRD, USA), Bill
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Cheetham (General Electric CRD, USA), Mehmet H. Goker (PricewaterhouseCoop-
ers, USA), and Kalyan Moy Gupta (Knexus Research Corp., USA).

Mirjam Minor (University of Trier, Germany) coordinated the contacts with CBR
researchers who have published work outside ICCBR and ECCBR conferences. We
invited those researchers because we wanted to bring to the ICCBR audience a com-
plete view of recent advances in CBR.

This diverse team together with the authors, the Program Committee, and addi-
tional reviewers are the stars of the CBR community in 2007. They made the confer-
ence happen and we want to thank them for their brilliant performances that are re-
corded in this volume.

We would also like to acknowledge the thoughtfulness of David W. Aha, whose
constant leadership and concern for the community are crucial to the success of
ICCBR and ECCBR conferences.

We gratefully acknowledge the generous support of the sponsors of ICCBR 2007
and their, partly long-time, sponsorship of ICCBR and ECCBR.

Additional help was given by doctoral students from the iSchool at Drexel Univer-
sity. Thanks to Caleb Fowler for serving as webmaster and to Sidath Gunawardena
and Jay Johnson for their help with this volume. In support of local arrangements,
thanks to the Local Arrangements Committee from the University of Ulster: Patricia
Kearney, Niall Rooney, Mykola Galushka, and Juan Carlos Augusto.

The submission and reviewing process was supported with the use of Conf Mas-
ter.net - The Conference Management System. We would like to express our gratitude
to Thomas Preuss. Finally, we thank Springer for its continuing support in publishing
this series of conference proceedings.

June 2007 Rosina O. Weber
Michael M. Richter
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Cases in Robotic Soccer

Hans-Dieter Burkhard and Ralf Berger

Humboldt University Berlin
Institute of Informatics
D-10099 Berlin
{hdb,berger}@informatik.hu-berlin.de

Abstract. Soccer playing robots are a well established test bed for the
development of artificial intelligence for use in real environments. The
challenges include perception, decision making and acting in a dynamic
environment with only unreliable and partial information. Behaviors and
skills for such environments must be optimized by experiences. Case
Based Reasoning provides an excellent framework for learning as dis-
cussed in this paper.

1 Introduction

Early Al was based on symbolic descriptions of problems using logics, theorem
provers and search techniques for solutions. There was a common understanding
that chess programs could be a milestone to understand and implement intelli-
gent behavior. Now we have machines that can play chess, but these machines
are not considered to be really intelligent. We have learned that acting in the
real world is much more difficult for machines. Machines are still far away from
performing daily tasks. Therefore, the development of soccer playing robots has
become a new challenge. The competitions in RoboCup are used to evaluate
scientific and technological progress, similarly to the role of chess in the past.

The key problem of Al is the knowledge about daily life, how it is like to ride
bicycle or to climb a tree, or simply to walk. Such skills are necessary to under-
stand language, to interpret a scene given by visual sensors, or to decide what to
do next. Human beings do acquire this knowledge by learning, by experiencing
the environment, by collecting cases about good and bad behavior. Therefore,
Case Based Reasoning (CBR) can be used as a basic technology together with
other methods from Machine Learning. At the same time, CBR meets again its
roots in cognitive science. It is still a challenge to understand how the experience
can be stored and organized for later use. The scenario of soccer playing robots
provides a lot of different tasks in dynamic real environments. The tasks include
perception, skills and deliberation.

Because lack of space, we cannot give a detailed introduction to RoboCup.
There are recently five different leagues, introduced to tackle different problems
on the base of the available hard- and software. Real robots are investigated in
the

— Middle Size League (MSL) with robots not exceeding a 50 cm diameter.

R.O. Weber and M.M. Richter (Eds.): ICCBR 2007, LNAI 4626, pp. 1{I5] 2007.
© Springer-Verlag Berlin Heidelberg 2007



2 H.-D. Burkhard and R. Berger

— Small Size League (SSL) with robots not exceeding 15 cm in diameter.
— 4-Legged League (4LL) with Sony’s AIBO robots.
— Humanoid League (HL) with robots of human shape.

The Simulation League (SL) was established in order to explore more complex
strategic and tactical behaviors which cannot be realized with real robots up to
now. Besides individual programs for the 11 players, each team has a coach
program for directing the playing style (while analyzing an ongoing match).

More information about RoboCup can be found on the website [I]. Recent
developments are discussed in the article [2].

The paper is organized as follows: In Section 2] we start with a very short
overview on the programming of soccer robots. It is the basis for the discussion
of the Machine Learning tasks in Robotic Soccer in section Bl A discussion of
the CBR related general problems is given in section[d] and section[5 gives short
overviews about existing work using CBR in RoboCup.

2 Programming Soccer Robots

The robots in RoboCup have to act autonomously, no human interaction is
allowed. In the so-called sense-think-act cycle they have to recognize the envi-
ronment, to decide about their next goals and related actions, and to perform
the actions using their skills.

The robots have to gather all needed information using their sensors. They
have to process the sensory input to obtain a picture about the situation, the
localization of the robot itself, of the other robots, and of the ball. Today, visual
sensors are widely used to perceive the environment. Sophisticated algorithms
for picture processing and scene interpretation are needed. Statistical methods
like Kalman filters or particle filters are used for localization tasks. Not only the
place but also the the direction and the speed of the ball are very important.
Latency modeling (a good team in SSL has a latency of approx. 110ms) and
prediction methods are important as well.

Especially the biped (humanoid) and quadruped robots (AIBO) need various
proprioceptive sensors for observing and controlling their movements. Sensors for
joint angles, forces, and torques measure the positions, directions and movements
of different parts of the body.

Having a belief (not necessarily a true knowledge) about the environment,
the robot has to decide for its next goals and actions. This means to check and
to evaluate the own chances in comparison to the opportunities of other robots
(team mates and opponents) on the playing ground. Therefore the robot needs
knowledge about his own skills and about the results it can hopefully achieve.

There are different levels of control. On the lowest level, the robot has to
control its body movements. In the case of humanoid robots it has to keep
balance while walking or kicking. This needs a continuous interaction between
sensor inputs and appropriate actions at the related joints. The compensation
of an unexpected force by an adjustment of the heap is an example. It is still
an open problem in the worldwide research on humanoid robots how this can be
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achieved best: how to couple sensors and actors, which sensors to use and where
to place them, how to program the control etc. Recent efforts try to implement
some kind of a spinal cord inspired by solutions from nature. Because of the
lack of complete models, methods from Machine Learning are tested for the
development of efficient (distributed) sensor-actor loops.

Having such basic skills like dribbling, intercepting or kicking the ball, the
next level of control concerns the choice of an appropriate skill for a given goal.
While the skill is performed, the robot has continuously to check the performance
of the skill, e.g. maintaining control over the ball while dribbling. Again, a close
interaction is necessary between sensors, control, and actuators.

On the highest level(s), tactical and strategic decisions can actually take place.
Related reasoning procedures are especially studied in the simulation league
because it is the only league which already uses 11 players per team.

3 Machine Learning Tasks in Robotic Soccer

As discussed in the previous section, a soccer program consists of modules ac-
cording to a “horizontal” structure regarding the sense-think-act cycle, and a
“vertical” structure of the levels (layers). The related modules can cooperate
in different ways depending on the architecture in use. Visual perception, for
example, is performed vertically starting with primitive image operations on the
lowest level up to the scene interpretation using background knowledge (phys-
ical properties, design of the playground etc.) at the higher levels. Horizontal
cooperation is necessary for the sense-think-act cycle.

Many of the processes inside the modules as well as the interconnections of
the modules are subject to Machine Learning. Available data are incomplete and
unreliable such that programming by hand leads to sub-optimal solutions. More-
over, optimal solutions are often too costly because of real-time requirements.
Hand crafted systems in RoboCup were sufficient only during the first years.
Now, all the good teams in simulation as well as in the real robot leagues use
various Machine Learning techniques to a great extend. RoboCup has become
an important scenario for development and evaluation of Machine Learning. The
scenario of keep away soccer [3] has become a standard evaluation test bed for
Machine Learning.

It is not possible to train all aspects of successful soccer playing in a single
learning process. The overall learning task (how to win) has to be decomposed
into smaller tasks. Up to now, the most scenarios investigated for Machine Learn-
ing in RoboCup are rather granular, but because of the interdependencies of the
processes, the scenarios for learning are depending on each other. Actually, the
pioneering work for multi layered learning came from the RoboCup community
[4]. We will give some examples in section

3.1 Perception

The players need to have beliefs about the movement of the ball, about their own
position and the position of other players. In the early days of RoboCup teams
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used distance data provided by range finders. But driven by the recent cheap
camera prices, visual data are most important today. Useful constraints between
relative and absolute data (distances, angles, positions, speed) can be exploited.
Absolute data are measured with respect to global coordinates, relative data
are measured with respect to the player itself (egocentric world model). The
data are collected and analyzed over time, usually with an underlying Markov
assumption. Statistical methods try to overcome the unreliability of the measure-
ments. Particle filters and Kalman filters are used for positioning tasks today.
The tuning of their parameters is a special learning task.

Up to now, the environment of the robots is carefully designed with color
coded objects. In the near future, the robots are to play in arbitrary environ-
ments, e.g. in a gym. The only spatial background knowledge the robots can
rely on is the fact that there should be two goals and maybe some field lines on
the ground. Therefore the robots will have to learn orientation also from other
landmarks available in a concrete room.

An intensively studied field is opponent modeling, especially in the simulation
league. The coach agent can observe the match and try to find out useful infor-
mation about the other team. There are different player types, and the coach
can try to find out which opponent players are on which positions. Moreover
he can try to identify special patterns (cases!) about the style of playing. The
findings can be used to improve the own strategy. The coach can analyze the
behavior recorded from log files as well as online during a match.

3.2 Act

Reliable basic skills are essential for the success in robotic soccer as well as in
human soccer. The simulation league provides an ideal test bed for the investiga-
tion of different skill learning techniques. The league can provide as many data
as wanted with low cost. In the real robot leagues, experiments are expensive
regarding the costs for the equipment, and they are time consuming. This leads
to more sophisticated experimental designs. Accompanying simulations are used
to get a better understanding, and special methods help for off line pre-selection
of promising trials [5].

With the arrival of legged robots, especially the humanoid ones, internal sen-
sors for measurement of forces and joint angles are used for the stabilization and
for fast movements including omni-directional walking, running, kicking and
dribbling. With about 20 degrees of freedom and frame rates of more than 100
fps, learning methods are mandatory to tune appropriate sensor-actor-loops.

Learning basic skills, like approximation of the best interception point for a
moving ball was already an early learning task in RoboCup simulation league
[6]. It is one of the characteristic properties of RoboCup, that skill learning
does not concern only a single action. In most cases, the success depends on
the learning of a suitable sequence of actions. This is obvious for the chain of
motor commands for legged robots, but it was even necessary in the simulation
league from the very beginning. A prominent example was the success of AT
Humboldt over the favorite team CMUnited in 1997. A successful shoot consists
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of a sequence of well tuned kick actions, and CMUnited was not prepared for
such kicks. But it is only a nice tale, that AT-Humboldt team could kick “the
ball around themselves, continually increasing its velocity so that it ended up
moving towards the goal faster than was imagined possible. Since the soccer
server did not enforce a maximum ball speed, a property that was changed
immediately after the competition, the ball could move arbitrarily fast, making
it impossible to stop” []. Since faster velocities would make the ball to leave the
kickable range immediately, it was not possible to get a higher speed than the
later defined maximum speed.

3.3 Decision Making

The control tasks can range from basic reactive behaviors up to high level delib-
erative behaviors. The overall performance depends on appropriate interconnec-
tions. Using weak skills, learning of decision criteria will result in optimization
of doing what is possible. Replacing the skill by a better one will need a new
learning of the higher level decisions.

There are obvious tasks for Machine Learning approaches like classifiers for
the selection of appropriate skills for a situation. Likewise, simple tasks concern
the choice of skills for the player in possession of the ball. The player may choose
between scoring, passing, dribbling etc. Next he may choose between different
ways to perform the chosen action, e.g. by a kick selection procedure and the
determination of parameters like direction and speed of the kick.

More complex deliberation concerns the behavior of the players not control-
ling the ball. Typical tasks are supporting or marking, more complex behavior
concerns standard situations. Deliberation of this kind needs more understand-
ing of tactical options. Certain patterns can be identified. The fine tuning or even
the detection of useful patterns is very challenging. Besides well developed basic
skills, the performance in high level cooperative play is already mandatory for
teams in the simulation league, and it becomes more and more important in the
real robot leagues. An exquisite example are the Tribots MSL team from Uni-
versity of Osnabrueck (world champion 2006) with successful transformations of
methods from their simulation team Brainstormers (vice champion in 2006).

There are different implementations for cooperative team play. Explicit plan-
ning and data structures for resulting plans do not seem to be mandatory. Neural
networks have been trained using reinforcement learning to determine just the
next action useful in the recent situation. Of course, Reinforcement Learning
did consider the later progress of playing, but the neural net computes only the
immediate action [7]. A related concept with symbolic representations was used
by AT Humboldt in 1997 [8]. The idea behind such concepts is the following
presumption: If there exists a good potential plan, then the subsequent choices
will lead to actions consistent with the potential plan. Problems may arise from
oscillations between different potential plans. Therefore the teams with such
approaches take some additional care for stability.

Other approaches use explicit symbolic plans. Symbolic approaches permit the
description of behavior patterns and standard situations of soccer, like change of
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wings, wall passes, offside trap, free kicks, corner kicks, etc. The suitable behav-
ior in such situations can be described in a script-like manner, where concrete
parameters are filled in as appropriate. Such a behavior is started with only a
rough partial plan (the ”idea” how to perform the behavior). In the beginning
of a wall pass, the both players involved know about the sequence of dribbling
(player 1)/positioning(player 2), pass from 1 to 2, intercept (2)/run over op-
ponent (1), pass back from 2 to 1, intercept by player 1. This is only a rough
script not a complete plan. The concrete parameters are determined during the
progress of the behavior depending on the opponents behavior, the movement
of the ball etc. (least commitment). The higher levels of layered architectures
are commonly used for the long term commitments. The choice of appropriate
plans may be considered again as a classification task. Tuning for optimization
is useful to find good parameters.

The coordination of different players can rely on different approaches. Com-
munication is useful to some extend, but limited in bandwidth and subject to
losses (especially for wireless communication). Cooperation without communi-
cation is also possible since all players act in the same environment. Therefore
RoboCup provides a lot of interesting challenges for multi-agent learning.

3.4 Machine Learning Methods in RoboCup

As we have seen, RoboCup needs learning for classification and for optimization.
Neural networks and Case Based Reasoning are often used for classification pur-
poses. Evolutionary approaches provide good results for scenarios with large
parameter spaces, e.g. complex situations or locomotion of legged robots. Learn-
ing of skills with delayed rewards are treated with methods from Reinforcement
Learning, where various function approximations for the large parameter spaces
are in use.

There is no space to discuss all methods in detail. Instead it can be stated that
rather all Machine Learning methods can be applied — and have been applied in
different soccer scenarios and for different modules. There are several hundred
teams in RoboCup competitions year by year, and there are a lot of people
working in Machine Learning.

4 CBR in RoboCup — Some General Remarks

4.1 What Are Cases, and Where Do They Come from?

As in many other CBR systems, the classical distinction between problem part
and solution part (rule type cases) is useful for soccer applications, too. For
simple classification tasks, the problem part contains examples from the classes,
while the solution gives the correct class. The selection of actions or skills can
be considered as classification. The solution may also contain a quality mea-
sure which evaluates the suitability of the proposed solution. Negative numbers
indicate that the solution was not successful or not correct. The contents (vocab-
ulary) of the cases are often given by attribute-value pairs of positions, speeds,
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teams, score, time, intentions etc. Similarity is then calculated by the local-
global principle [9]: Local similarities of the attributes (e.g. inverse distances of
positions) are combined by a certain function. Weighted sums are very popular,
whereby the weights can be adjusted by learning.

The data of the matches provide a large pool for case bases. For skill learning,
the cases can be recorded from special experimental settings (e.g. for intercepts
or dribbling). The simulation league can produce data as much as one needs. For
the real robots, the collection of data is more limited by time and by the efforts
needed for recording.

The case data are then extracted from the recorded files. This means to iden-
tify related situations and related sequences of actions from a stream of recorded
events. A pass e.g. consists of a kick by the first player, then the ball moves freely
for some time, and then the second player intercepts the ball. Thereby, the sec-
ond player must belong to the same team. It is difficult to judge if a pass was
actually performed by intentions of both players. But often it is only important
that a pass occurred, regardless for what reasons.

There are useful methods for the analysis originally developed for commen-
tator programs and for coaches, respectively. Such programs can find the co-
occurrences of pre-situations, action sequences, and post-situations. They can
find the successful passes in the recorded games. But there are also situations in
the matches where a pass could have been successfully performed, but the player
did not try. Such situations would need a more careful analysis. This addresses
an old problem of experience based learning: If there was no trial, then there is
no experience (exploration problem). A human expert could consider such sit-
uations and design related cases. More sophisticated analysis tools can be used
for such tasks at least to some extend.

Moreover, typical cases can be designed completely by humans. There are a
lot of standard situations in soccer. They are often explained by related cases
in human soccer. This provides a good alternative approach for programming
soccer robots. Instead of defining the conditions for the application of a maneuver
in terms of spatial relations between the players and the ball, one can provide a
set of typical cases and use CBR methods.

The use of cases is often appropriate since the decision are ordered by time:
A recent situation (problem) is mapped to subsequent actions (solution).

One drawback of the rule type case format is the need for different cases while
dealing with the same standard situation, e.g. during a wall pass. There we have
a unique script with ongoing decisions (when to pass to whom, where to run to,
where to intercept). Using rule type cases, we would need different cases for each
of these decisions.

This problem can be solved using the ideas of case completion as proposed in
[10]. A case describes a whole episode (e.g. of a wall pass) with concrete decisions
and actions. While performing a new episode, those cases are retrieved step by
step from the case base which correspond to the recent belief (initial part of
the recent course of events and situations, e.g. after performing the pass from
player 1 to player 2 in the wall pass). These cases can then provide more data
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from their stored experience: How the problem was solved with further decisions
(e.g. where the player 2 should intercept the ball, where the player 1 should run
to etc.).

Such cases are of constraint type: Unknown values are determined from given
data using cases as constraints. Systems using constraint type cases can be imple-
mented with Case Retrieval Nets (CRN, [10]). Such a case is a set of information
entities which have occurred together in the stored episode. Their usage consists
of retrieving remaining (unspecified) information entities (IEs) to a partially
described situation.

Another example of constraint type cases comes from perception. There, a
case may contain the positions of objects (e.g. players and ball) in world co-
ordinates, and the distances between the objects. The description is redundant
(e.g. distances could be calculated from positions and vice versa if some fixed
positioned objects are involved). Therefore a case with all these data can be re-
trieved by some of its IEs and serve for specifying the unknown IEs (they could
also be calculated by trigonometry — but humans do not).

4.2 Maintenance

Maintenance of cases is substantial for the success of CBR in soccer programs.
Large case bases are not useful because of the needs for real-time processing. It
is necessary to keep a bounded number of cases using related techniques.

Moreover, cases may become invalid over time. This may happen due to
changes in other modules, for example after collecting new cases there. It may
also occur for cases collected online, e.g. for opponent models. If a team uses
such models and changes its style of play, then the opponent usually responds
with other patterns of behavior (besides the fact that opponents may also change
their behavior using their related modeling methods for our team).

Another problem concerns the consistency of the case bases of different players
of a team. If the players use the same CBR system, they have a chance to obtain
the same proposals. It then depends on comparable world models. But if the
players have different case bases (due to online collected experiences), then their
decisions may not lead to a joint intention.

4.3 Generalization (Adaptation)

In the soccer domain, adaptation is usually closely related to the similarity
measure. This concerns spatial transformations (positions, symmetries etc.) and
seems to be continuous for a first look. Actually, there can be substantial dis-
continuities according to quantization effects. They are explicitly implemented
even in the soccer server of the simulation league.

5 CBR in RoboCup — An Applicational View

In the last 10 years CBR has been applied to a broad variety of aspects of robot
control. We know of more than 20 international publications from the RoboCup
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community in this field. In the following sections we will have a more detailed
look on how Case Based Reasoning is incorporated.

5.1 CBR Methods for Self-localization

Sensing a camera image with some striking features similar to an image corre-
sponding to a known position (case) usually implies that the current position is
similar to the known one.

The paper [I1] utilizes local visual information of landmarks for self local-
ization (position and orientation) of an AIBO robot in the 4-Legged League.
The problem part of a case represents an omni-directional view from a certain
position. The solution is the according position on the field.

The playground was divided into cells of 20cm x 20cm. For each of these
partitions a case was generated, that consists of information about all landmarks.
In detail these are the following features: the width, height and color of the
appearances of all landmarks as well as the angles between pairs of landmarks.
Thus every case consists of 68 (out of 859 possibly different) information entities.

In the application, only some landmark features are available (since the robot
camera has a view angle of 50 degrees). Hence cases must be retrieved according
to partial problem descriptions. This was implemented with the help of Case
Retrieval Nets [10]. To find the robot’s position a weighted sum is computed
over all solutions of cases that are sufficiently similar to the given camera image.
The main advantage of this approach is its flexibility and its robustness even
against some strongly incorrect visual information.

5.2 CBR Methods for Opponent Modeling

The overall problem of opponent modeling is defined as “building up a model of
the opponent’s behavior based on observations within a game”. The particular
practicability of Case Based Reasoning is given since human players seem to solve
this problem in a similar way and there are usually only few learning samples
to exploit. At least three different research groups applied CBR methods to
opponent modeling in RoboCup.

Wendler et al. [T2/T3] use a combined system for recognizing and predicting
of behaviors. The prediction is based on the recognition of associated triggers,
which are assumed to cause the agents to start the corresponding behavior. For
each particular behavior they define a set of relevant attributes such as positions
or relative angles. Cases are generated automatically during the behavior recog-
nition learning phase. Potential triggers have to be identified for the retrieval,
and then the case base is searched for cases with similar triggers. Finally, the
case is adapted according to the current situation by comparing the observed
trigger and the trigger stored in the case.

The work of Steffens [I4/15] investigates improvements of prediction accuracy
for case-based opponent modeling. The approach also enhances efficiency since
it exploits the same observations during learning for different purposes. While
the observations remain the same, the similarity measure is adapted to the type



10 H.-D. Burkhard and R. Berger

or role of the agents. This adaptation is done by integrating problem solving
knowledge represented in goal dependency networks (GDN). The GDNs are de-
fined manually and contain very general but domain dependent information. It
could be shown that using an adaptive similarity measure regarding the role of
the agents leads to a better prediction of a player’s actions.

The approach of Ahmadi et al. [16] is similar to the last one. It also tries
to optimize the actual CBR process by adapting its meta-parameters. It uses a
second case-based subsystem for this task, building a two-layered CBR archi-
tecture. The complexity of the problem is split into two subproblems, each of
which works with a relatively small number of cases. The features of the ordinary
('lower’) cases are defined relative to the ball. These cases provide local solutions
which can be applied everywhere in the field. Adapting these cases for different
game situations requires information about the current focus of the play. This
information is provided by the 'upper’ cases and incorporates the position and
velocity vector of the ball and a rough estimation of the position of all the play-
ers. The second layer provides optimal case parameters (representation, retrieval
and adaptation). It monitors the performance of the lower layer. Ahmadi et al.
could show that the the system is able to learn a competent opponent model by
the iterative application of this approach to only very few games.

5.3 CBR Methods for Situation Analysis and Decision Making

In this paragraph we will address the problems of situation analysis and (indi-
vidual) decision making. These are probably the tasks where the application of
case-based methods is most apparently.

Probably the first application of Case Based Reasoning in RoboCup is shown
by the AT Humboldt’ team [I7]. CBR was used for dynamic situation assess-
ment in the Simulation League. The task is to find a "preference position” where
the player should move to. Cases are represented by a feature vector of a game
snapshot including the following properties: occupancy of the segmented play-
ground by other players, time until a teammate will control the ball, preference
directions, available power resources, distance to the ball and to the other play-
ers. The work again uses Case Retrieval Nets.

In [I8] the prior work was continued towards decision making of the goal-
keeper. He has to decide whether to stay in front of the goal and defend the
goal-line or to run towards an attacker to decrease the possible shooting angles
to the goal. The logfiles of previous games were analyzed for situations in which
a goal attack was running and the goalie had to decide what to do. From each of
such situations a case was generated which basically contained the positions of
the players and the ball, the ball’s velocity, the decision of the goalie regarding
the discussed scenario, and the success of this behavior. The problem of finding
a suitable similarity measure was tackled by using a combination of an inverse
distance and a relevance function that provides a rating of the estimated impact
of a players position on the goalie’s decision. An interesting aspect of this work
is that the whole procedure from processing and analyzing hundreds of logfiles
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to building up the index and the runtime structure works fully automatically
and takes just a few hours.

The work of ’AT Humboldt’ was recently extended to a comprehensive CBR-
framework [19J20] for decision making for cooperative tasks. Perhaps the most
interesting feature is its twofold case-base optimization process.

Firstly only the significant pieces of information from each case are extracted.
This is done by defining areas of interest based on the spatial relations between
the ball and the relevant players. The deletion of the non-essential information
speeds up the retrieval and leads to more general cases. The second optimization
task is to delete the redundant cases. To determine whether a case is redundant
(it can be deleted without decreasing the competence of the case-base), the
individual competence contribution model based on the concepts of coverage and
reachability is used. It turned out that the deletion of the redundant cases shrinks
the case-base significantly. Furthermore the information density of the case-base
decreases and the dispersion of the information becomes more homogeneous
which again speeds up the retrieval. First applications of the system used the
game play 'wall pass’ to successfully show it’s performance.

A very comprehensive work comes from the group of Raquel Ros [21122]. They
propose an almost complete methodology for case-based decision making applied
to the 4-legged League. Their work covers:

Case-acquisition: The idea of this work is to start with an initial case base of
prototypical cases that was manually designed with the help of expert knowl-
edge. A supervised training is installed afterwards where an expert reviews the
retrieved solution of the system. The robot can then adopt the scope of the case
accordingly.

Case format: As usual a case represents a snapshot of the environment at a
given time. The case definition is composed of three parts: case = (P, K, A).
P is the problem description containing a set of spatial attributes as well as
some game-based attributes (timing of the match and current goal difference).
K indicates the scope of the case defined as the regions of the field within which
the ball and the opponents should be located in order to retrieve that case. A is
the solution description — a sequence of actions the robots should perform. This
is often denoted as 'game play’.

Retrieval: The retrieval is implemented as a twofold process: It considers the
similarity between the problem and the case, and the cost of adapting the prob-
lem to the case. The similarity function indicates how similar non-controllable
features (cannot directly be influenced) are between the problem and the case us-
ing local similarities and a global aggregation function. The cost function defines
the cost of modifying the controllable features (own and teammates’ positions)
of the problem to match the case.

Reuse: The reuse phase refers to the adaptation of case features before executing
the associated actions. Its basic idea is to transform the controllable features of
the current problem in a way that the relation between these features w.r.t. the
ball is the same as in the retrieved case.
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5.4 CBR Methods for Planning

There are a lot of different possibilities for the integration of Case Based Rea-
soning into the robot’s planning process (from multi-agent decision making to
complete architectural models). Since the spectrum is too broad we will only
pick some exemplary work and outline its ideas briefly.

A complete single-player hybrid architecture (CBRFuze) is introduced in [23].
It combines a deliberative problem solver using Case Based Reasoning and a
reactive part using fuzzy behavioral control. The problem description part of
the cases uses a set of fuzzy linguistic variables which is also helpful for case
indexing and provides an easy similarity measure.

Marling et al. [24] show how Case Based Reasoning can be integrated into
various tasks of their Small Size team. They present three CBR prototypes, for
the tasks of positioning the goalie, selecting team formations, and recognizing
game states. So far the prototypes are only realized in simulation yet.

In [25] a system for strategic behavior selection in the Small-Size League is
proposed. It utilizes Case Based Reasoning for dynamic situation assessment in
offensive and defense game situations. In addition Bayesian classifiers are used to
choose between optimal behaviors. The approach was tested using the formerly
mentioned 'keepaway’ task.

Karol et al. [26] propose a theoretical model for high level planning in the
Four-Legged League. Their model supports game play selection in common and
key game situations. It is argued that developing a case base for robot soccer
game plays can capture creative genius and enduring principles of how to play
the game. The proposed approach uses the conceptual spaces framework for
categorization of cases by well-defined similarity measures.

5.5 CBR Methods for Coaching

Until now coaching is available exclusively in the Simulation League. A coach
may give advises to adapt the team’s game strategy. Furthermore, the coach
can initially choose between varying player types that differ from each other in
their physical attributes. He can assign them their roles in the game, and he can
substitute players up to three times during a match.

The problem of finding a good line-up is investigated using a case-base ap-
proach in [27]. The problem part of a case consists of the individual properties
of all available heterogenous players. The solution part presents some alterna-
tive solutions. Each solution features descriptive elements like formation type,
main strategy or opponent team as well as the assignment of the player types.
It also provides some measure of the quality of the solution. This was done
by analyzing the performance of games played with the related formation. The
second important issue was the definition of appropriate similarity measures be-
tween heterogeneous player types, i.e. the question which of the properties have
a significant impact on the similarity between two player types.



Cases in Robotic Soccer 13

5.6 CBR Methods for Acting

There is some published work of using Case Based Reasoning for acting in general
robotics (e.g. for navigation and parameter optimization) but we know only one
paper in RoboCup. In [28] an interesting combination of Reinforcement Learn-
ing and CBR is presented. Case-based methods are used for approximating a
high-dimensional, continuous state value function of the Reinforcement Learning
task. A case is regarded as pair of state representation and state value estimation
learned from exploration examples. To determine a specific state value, k-nearest
neighbor regression is used based on Euclidean distances. Special maintenance
procedures are implemented. They handle the growth of the case base and serve
for deleting older cases. Since early cases may be due to early insufficient approx-
imations, such cases should be removed from the case base when approximation
becomes better. The approach was evaluated using the ball interception task
and could produce good behavior policies within a very short time and with
comparatively little case data.

6 Conclusion

Intelligent behavior in restricted domains — as today already implemented in nu-
merous assistance systems or in chess — can be achieved using special methods
and techniques (e.g. search, statistics, artificial neural networks). But complex
intelligent behavior needs the solution of lots of different combined problems
using a large variety of methods and technical staff. Many skills which humans
seem to perform easily are of that kind. Perception and action, language under-
standing and communication are examples.

Soccer playing robots provide a very challenging test bed with a lot of different
requirements similar to the requirements of intelligent behavior in real world
scenarios. It is impossible to program such robots in all its details. Instead,
methods from Machine Learning are needed for the development and the tuning
of suitable features, skills and behaviors. Since acting in the real world is based
on experiences, Case Based Reasoning is best suited for the tasks on hand.

We have shown, that CBR can be used for all aspects of the sense-think-act-
cycle, and we have discussed the existing work in this field. There are in fact a lot
of interesting results and useful applications. Nevertheless, there are more open
than solved problems to date. Especially the integration of different solutions is
a challenging task for CBR-methods.

The development of autonomous intelligent robots is a challenge which can
only be achieved by the integration of different fields. The soccer playing robots
are an attempt to study these problems and to use the framework of friendly
competitions for scientific research. Thus it does not really matter if robots can
win against human players in 2050. Nevertheless it is important to have this
vision in mind as a long term goal to consider new questions and to foster new
results.
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Abstract. This paper addresses the role of case-based reasoning in
semantic search, and in particular, as it applies to Knowledge Sifter,
an agent-based ontology-driven search system based on Web services.
The Knowledge Sifter architecture is extended to include a case-based
methodology for collaborative semantic search, including case creation,
indexing and retrieval services. A collaborative filtering methodology is
presented that uses stored cases as a way to improve user query specifi-
cation, refinement and processing.

Keywords: Agents, Semantic Search, Collaborative Filtering, Case-
Based Frameworks, Knowledge Sifter.

1 Introduction

This paper addresses an important problem, that of assisting users in posing
queries to multiple heterogeneous sources over the Internet and the World Wide
Web. There is a semantic mismatch between how a person conceptualizes a
query and how that query must be expressed using the limited keyword-based
query interfaces of traditional search engines. This “semantic mismatch” has
been addressed by WebSifter [I]; it performs a preprocessing step in which the
user develops a semantic taxonomy tree of concepts — terms and their synonyms
— which are then transformed into queries submitted to traditional search en-
gines. The resulting best matches from the individual search engines are then
rated by means of a multi-attribute decision model that associates weights to
the syntactic, semantic, categorical and authoritative components of each page
retrieved. The results are presented to the user who then has the opportunity to
rate those URLs that best match his or her requirements. WebSifter served as
the preferred embodiment for a recently-awarded patent [2].
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Knowledge Sifter [3] is the successor to WebSifter in that the lessons learned in
designing and building WebSifter have been used to create an agent-based system
that coordinates the search for knowledge in heterogeneous sources, such as
the Web, semi-structured data, relational databases and the emerging Semantic
Web.

This paper begins with an overview of the Knowledge Sifter (KS) agent-
based architecture. The artifacts created by the agents during the formulation,
refinement, processing and results ranking of a user query are captured and
described in terms of a meta-schema. The artifacts can be indexed and stored in
a repository as user-cases. A case-based framework is presented for specifying,
storing, retrieving and recommending user-cases to assist in query formulation,
recommendation and processing. The cases are represented in terms of an XML
schema, are stored in a case repository and are managed by a case management
agent. Finally, an algorithm is presented that uses a hybrid approach which
combines both content-based and collaborative filtering techniques.

2 The Knowledge Sifter Agent-Based Architecture

The Knowledge Sifter project, underway at George Mason University, has as its
primary goals: 1) to allow users to perform ontology-guided semantic searches for
relevant information, both in-house and open-source; 2) to access heterogeneous
data sources via agent-based knowledge services; and 3) to refine searches based
on user feedback. Increasingly, users seek information from open sources such
as the Web, XML-databases, relational databases and the emerging Semantic
Web. The Knowledge Sifter project makes use of open standards for both on-
tology construction — the Web Ontology Language (OWL) — and for searching
heterogeneous data sources — Web services. The Knowledge Sifter (KS) archi-
tecture, depicted in Fig. Il may be considered a service-oriented architecture
consisting of a community of cooperating agents. The rationale for using agents
to implement intelligent search and retrieval systems is that agents can be viewed
as autonomous and proactive.

The information domain we address is that of Image Analysis, but multiple
ontologies and domains can be supported. The architecture has three layers:
User Layer, Knowledge Management Layer and Data Sources Layer. Specialized
agents reside at the various layers and perform well-defined functions. They sup-
port interactive query formulation and refinement, query decomposition, query
processing, result ranking and presentation. The KS architecture is general and
modular so that new ontologies[4] and new information resources can be incor-
porated easily, in almost a “plug-and-play” fashion. The various KS agents and
services are presented below.

User and Preferences Agents. The User Agent interacts with the user to elicit
user preferences that are managed by the Preferences Agent. These preferences
include the relative importance attributed to terms used to pose queries, the
user-perceived authoritativeness of Web search engine results, the biases a user
has towards data sources, etc., used by the Ranking Agent. The Preferences
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Fig. 1. The Knowledge Sifter Agent-Based Architecture

Agent can also learn the user’s preference based on experience and feedback
related to previous queries.

Ontology Agent. The Ontology Agent accesses an imagery domain model, spec-
ified in OWL, and depicted in Fig. 2l In addition, there are three authoritative
name services: Princeton University’s WordNet [5], the US Geological Survey’s
GNIS, and the National Geospatial-Intelligence Agency’s GNS. They allow the
Ontology Agent to use terms provided by the name services to suggest query
refinements such as generalization, specialization and synonyms. For example,
WordNet can provide a collection of synonyms for a term, while GNIS and GNS
translate a physical place name — in the US and the World, respectively — into
latitude and longitude coordinates that are required by a data source such as
TerraServer. Other appropriate name and translation services can be added in
a modular fashion, and the domain model can be updated to accommodate new
concepts and relationships.

Authoritative Name Services. The three name services are WordNet, GNIS and
GNS. When the initial query instance, specifying a person, place, or thing, is
sent to the Ontology Agent, it then consults WordNet to retrieve synonyms. The
synonyms are provided to the Query Formulation Agent to request that the user
select one or more synonyms. The decision is communicated to the Ontology
Agent which then updates the appropriate attribute in the instantiated version
of the OWL schema. If the attribute value is the name of a class of type place
then the Ontology Agent passes the instance to the both GNIS and GNS. These
take the place name as input and provide the latitude-longitude coordinates as
output. This information can then be communicated to the Query Formulation
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Fig. 2. Imagery Ontology Schema in Unified Modeling Language Notation

Agent which then forwards the information in the reformulated queries to the
Web Services Agent for processing.

Query Formulation Agent. The User Agent poses an initial query to the Query
Formulation Agent. This agent, in turn, consults the Ontology Agent to re-
fine or generalize the query based on the semantic mediation provided by the
available ontology services. Once a query has been specified by means of inter-
actions among the User Agent and the Ontology Agent, the Query Formulation
Agent decomposes the query into subqueries targeted for the appropriate data
sources. This involves semantic mediation of terminology used in the domain
model ontology and name services with those used by the local sources. Also,
query translation is needed to retrieve data from the intended heterogeneous
sources.

Web Services Agent. The main role of the Web Services Agent is to accept a user
query that has been refined by consulting the Ontology Agent, and decomposed
by the Query Formulation Agent. The Web Services Agent is responsible for
the choreography and dispatch of subqueries to appropriate data sources, taking
into consideration such facets as: user preference of sites; site authoritativeness
and reputation; service-level agreements; size estimates of subquery responses;
and quality-of-service measures of network traffic and dynamic site workload [6].

Ranking Agent. The Ranking Agent is responsible for compiling the sub-query
results from the various sources, ranking them according to user preferences, as
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supplied by the Preferences Agent, for such attributes as: 1) the authoritativeness
of a source which is indicated by a weight — a number between 0 and 10 — assigned
to that source, or 2) the weight associated with a term comprising a query.

Data Sources and Web Services. At present, Knowledge Sifter consults two data
sources: Yahoo Images and the TerraServer. Yahoo Images supports Representa-
tional State Transfer (REST)-based [7] web services which simply returns XML
result data over HT'TP. Yahoo Images supports the name and description for
images; this allows the Ranking Agent to perform more precise evaluation for
the semantic criteria. The Ranking Agent also uses the size of images contained
in Yahoo Images metadata to filter images based on user preference, but the
metadata does not contain the creation time of images which is a good measure
of temporal aspect.

3 Emergent Semantics in Knowledge Sifter

This section presents some notions related to emergent behavior and patterns
that arise from 1) the functioning of Knowledge Sifter, and 2) the use of compos-
able Web services to create reusable search frameworks. This topic is discussed
in detail in [3], so we present an overview here. Our approach to Emergent
Semantics in Knowledge Sifter is to collect, index, organize and store signifi-
cant artifacts created during the end-to-end workflow for KS. The KS workflow
manages the entire search process, including, query specification, query reformu-
lation, query decomposition, web service selection, data source selection, results
ranking and recommendation presentation.

By stepping back and abstracting the agents, classes, their relationships and
properties, one can construct the Knowledge Sifter Meta-Model (KSMM) [3].
Fig. B depicts the UML Static Model for the KSMM. What follows is a brief
overview of the classes and relationships depicted in Fig.

At the top is the Class Agent, which is specialized to those agents in the
KS architecture, specifically the UserAgent, PreferencesAgent, OntologyAgent,
QueryFormulationAgent, RankingAgent and WebServicesAgent. These agents
manage their respective object classes, process specifications, and WebServices.
For example, the UserAgent manages the User Class, the UserInterfaceScenario,
the User PatternMiningAlgorithm, and the WebServices. The User specifies User
Preferences that can be specialized to Search Preferences and Source Prefer-
ences. The User poses UserQuery that has several QueryConcept, which in turn
relates to an OntologyConcept. The Ontology Agent manages both the User-
Query and the OntologyConcept that is provided by an OntologySource. Both
OntologySource and DataSource are specializations of Source. Source is man-
aged by the WebServicesAgent and has attributes such as provenance, coverage,
access protocol and history. DataSource has attributes such as Quality-of-Service
Service-Level-Agreements (QoS-SLAS) and Certificate.

A UserQuery consists of several RefinedQuery, each of which is posed to sev-
eral DataSource. DataSource provides one-or-more Dataltem in response to a
RefinedQuery as the QueryResult. Based on the returned QueryResult, the User
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Fig. 3. Knowledge Sifter Meta-Model Schema in UML Notation

may provide Feedback as to the result relevance and other comments. These may
impact the evolution of metadata associated with UserPreference, query formu-
lation, data source usage and result ranking. The KSMM can be implemented
as a relational database schema, which can be used to organize, store and inter-
relate the artifacts associated with a user query. The data can then be mined
emergent properties related to the use of Knowledge Sifter resources.

4 Case-Based Knowledge Sifter Framework

The original Knowledge Sifter [3] creates a repository of user queries and artifacts
produced during the search process. In this section, a case-based framework is
proposed for KS in order to recommend query specifications and refinements
based on the previously-stored user-query cases. A user query case is generated
only when a user provides relevance feedback for results returned for a query.
The user feedback is the user’s evaluation of the degree of relevance of a result to
the refined query; e.g., highly relevant; relevant; highly not relevant, or unclear.
This relevance feedback can also be regarded as a user rating of the result’s
information quality.

The role of the Case Management Agent in Fig. @lis to communicate with the
User Agent, and to obtain cases from the User Query Case Base that have user
feedback annotations. The Query Formulation Agent communicates with the
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Case Management Agent to retrieve cases according to a user query and user
preferences. To efficiently retrieve cases, the Case Management Agent maintains
ontology-based indices to cases as described in Sect L2l From the retrieved cases,
a refined query with data source information will be selected using a collaborative
filtering approach which is described in Sect 3l KS also maintains pre-compiled
component repository for accessing data sources for each information domain
such as places, music, movies, scholarly papers, etc. Based on the collaborative
filtering approach, KS semi-automatically selects data sources and is dynamically
configured with Web Services-based wrapper components for each selected data
source.
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Fig. 4. Knowledge Sifter Case-Based Framework

4.1 Semantic Case Representation

Case-based Knowledge Sifter maintains cases representing a user query and its
artifacts; these are required to recommend a refined query for each user-selected
information domain. Fig. Bl shows an XML-based structure for the case represen-
tation. A case contains a username to identify its user, and this user identifier
will be used to perform collaborative filtering and to retrieve the user’s prefer-
ences. Also, each case has an associated user query and multiple refined queries,
because KS generates a refined query for each information domain.

A user query can have multiple concepts which consist of a user term, multi-
ple ontology references, and a weight. For example, suppose one wishes to visit
the Washington Monument and then dine at a steakhouse in DC, then the key-
word terms in a query might be “Washington monument” and “steakhouse”.
The ontology reference is a concept identifier in an ontology which contains the
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concept. WordNet is employed as a general upper ontology and several domain-
specific ontologies such as places, restaurants, and wine can be linked and used
to represent user concepts. This referenced ontology concept serves as an index
of the user query as described in Sectl£2l The concept weight is a degree of
importance the user assigns to a concept. A refined query has exactly one infor-
mation domain for which the query is specified. The refined query is a weighted
multi-dimensional /multi-valued query as represented in Fig.[5l The feature name
is also a variable since the schema of a refined query will be determined by
its information domain and the user-selected data source. The data source in-
formation is also a feature of the refined query and it can be represented as
FeatureName : data — source, FeatureV alue : imdb.com, where IMDB denotes
the Internet Movie Data Base.

Thus, a feature can be not only content-based metadata, but also metadata
created during on the information object’s life-cycle[d]. The feature name may
be standardized in the scope of KS to remove the ambiguity which can occur
during the search and recommendation processes described in SectL3l Some
standardized metadata such as Dublin Core Metadata can be used to describe
feature attributes.

“Username

“UserTerm
K

e

Fig. 5. XML-Based Semantic Representation of a User Case

FFeatureweight

4.2 Case Retrieval Via Ontology-Based Indices

The Case Management Agent maintains ontology-based indices for entire cases.
As represented in Fig. Bl each user term of the query concept can have refer-
enced ontology concepts. For each ontology concept, case identifiers referencing
the ontology concept can be stored as the indices. Fig. [@] represents a simple
index structure for an ontology which has an ontology identifier, several con-
cept indices consisting of ontology concept identifiers of that ontology, and case
identifiers for each of the ontology concepts. This approach allows for efficient re-
trieval of similar cases because it explores related ontology concepts first, rather
than navigating a large number of the user query cases. Fig. [[ represents an al-
gorithm for retrieving cases similar to the user query via ontology-based indices.
First, the algorithm generates expanded queries of every possible combinations of
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concepts, including their equivalent and generalized concepts. For example, a
user query {Washington Monument, steakhouse} can be expanded via ontology
navigation as: {Washington Monument, chophouse}{Washington Monument,
restaurant } {DC, steakhouse}, etc. The DC concept is obtained from WordNet
through the “Part Holonym” relationship of the “Washington Monument” con-
cept to the “DC” concept, and this can be regarded as a spatial generalization.

The algorithm then retrieves cases which are indexed by all the concepts
of an expanded query, but limiting the number of the cases to a prespecified
maximum. For efficiency purposes, whether the required number of cases are
retrieved or not will be checked before expanding one element query of powerset
of the user query because the expanded queries cannot be more similar to the
user query than the original element query. The weighted sum of each query can
be calculated from (). The sim(C,, C;) in the algorithm is a similarity between
the expanded user query of the active case and the user query of the retrieved
cases using cosine correlation which is widely used for the vector model in IR
[8] as defined in (@). This similarity will be used in Sect. as the similarity
between the active case and its similar cases in terms of the similarity of their
user queries. Note that the original user query of the active case is also one of
the expanded user queries.

w(ug;) = th(cz‘j) * uw(cij) (1)

J

1.0 if ¢;; is a user concept
fu(ci) = syw if ¢;; is an equivalent concept of the user concept
7Y hyw if ¢;; is a generalized concept of the user concept

syw * hyw if ¢;; is a generalized concept of the equivalent concept

where ug; represents a user query for case ¢ and tw(c;;) represents a predefined
weight for the type of j* concept in ug;. The terms syw and hyw denote the
predefined weight for an equivalent (synonym) concept and a generalized (hy-
pernym) concept, respectively. The term uw(c;;) is a user defined weight for a

concept c¢;;.
E CWqj * CWij

sim(Ca, C;) = JEEQa (2)

2 2
E cwg; - E cw;;
JEEQa JEEQa
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where cw,; and cw;; represent the weights of 4t concept in the expanded
user query of the active case E(@Q, and the user query of the retrieved case
respectively.

Input: the active user query uqg.
Output: a number (maxnc) of cases similar to the user query

maxnc « 10
A set of retrieved cases RCS « the Empty Set
A set of expanded queries EQS — the Empty Set
CQOS « the powerset of ug, except the empty set
Sort elements of CQOS in descending order of their weights
FOREACH cg in CQS
IF #RCS < maxnc THEN
FOREACH concept in cg
EC « a set containing the concept and its equivalent concepts
END
CPECS ~ Cartesian product of EC sets
FOREACH cpec in CPECS
FOREACH concept in cpec
HC « a set containing the concept and its generalized concepts
END
CPHCS ~ Cartesian product of HC sets
FOREACH cphc in CPHCS
WeightOfeq — a weighted sum of concept weights in cphc
Add cphc to EQS
END
END
Sort elements of EQS in descending order of WeightOfeq
FOREACH eqg in EQS
If WeightOfeq > WeightOfNextcqg THEN
Remove eqg from EQS
CASES « a set of cases indexed by every concept in eq
IF #RCS < maxnc THEN
FOREACH case in CASES
sim(C,,C;) — a cosine similarity of eg and case’s user query
END
Sort elements of CASES in descending order of sim(C,,C:)
FOREACH case in CASES
IF #RCS < maxnc THEN
Add case to RCS
END
END
END

Fig. 7. Case Retrieval Algorithm via Ontology Index

4.3 Collaborative Incremental Query Specification

Content-based filtering is a method for recommending unseen items to a user
based on the contents of items they have already seen and are stored in their
profile. It can assist users in refining a query based on the artifacts of their
past queries which are similar to the active query. However, similar queries may
not yet exist in the active user’s profile, or the acceptable number of the user-
preferred data items cannot be easily obtained because of insufficient feedback
data provided thus-far.
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This situation is ameliorated by using collaborative filtering, which attempts
to predict usefulness of as yet unseen items for an active user, by proposing items
based on those previously rated by other users. The basic idea is to recommend
a set of unseen items that are preferred by other users who have tastes similar to
the active user. Thus, the drawbacks of content-based filtering can be addressed
with a higher level of confidence.

However, collaborative filtering cannot be applied directly to our case-based
KS framework because more than one user-query case, stored in the case reposi-
tory, may be similar to the active user query. A better approach is to recommend
a single aggregated refined query from the cases having a certain level of user-
query similarity. Therefore, a hybrid filtering approach which combines both
collaborative filtering and content-based filtering can be used effectively in this
architecture. However, if there is no previously-stored user query posed by the
active user in the selected similar cases, the collaborative filtering cannot be
directly used for the active refined query because the recommendation of the
query specification should be made before retrieving results from data sources,
i.e., no user feedback on results of the query which is required for the collabo-
rative filtering exists on the recommendation time. To address this problem, an
aggregated refined query from the refined queries of the selected cases can be
recommended.

The case-based KS recommends the refined query and the user confirms that
this is to now be the active refined query. During this confirmation step, the user
can fine-tune the query parameters, e.g., for the data source feature, the user
might add or remove data sources and adjust the weights for each data source.
Then, KS retrieves results from the data sources in the user-confirmed refined
query by dynamically translating it to one or more queries according to each
data source’s schema/ontology. The active user can provide feedback on some
results and can request another recommendation of the specification. At this
time, collaborative filtering can be used because the artifacts of active refined
query will have been stored in the case base as a new case, it can then be selected
as a similar case because the case’s user query would be identical to the current
specification of the active user query.

Data Item Recommendation via Query-to-Query Collaborative Fil-
tering. With the user rating values for result data items of the active refined
query, the active user’s rating value of unseen data items can be predicted from
the results and their rating values for the active refined query and neighbor re-
fined queries which can be found from the KS repository. The prediction can be
calculated from () and (@) which are derived from the well-known collaborative
filtering approach used in GroupLens [I0].

This refined query-based collaborative filtering allows KS to show the unseen
data items immediately because the data items are found in a neighbor’s search
history in the repository. The mismatch problem between user queries and re-
fined queries can be alleviated by using a threshold for the similarity between
the active refined query and neighbor refined query, i.e., only the neighbor refined
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query having a certain high similarity value will be selected for this prediction
process.

> (Praudte = Traw) - 5im(rQad, vgia) - sim(Ca, C;)
ieNC | | 3)
Z |sim(rqad, rgia)| - sim(Cq, C;)
iENC

pT‘Qdedtu = TT‘QQd +

Z (T"”Qadvdts - TT’qad) ’ (TT’qm,dts - TT‘Qid)
SIM(rgad, 7qid) = s€SD (4)
Orgaa " Orgia

where prq,,,dt, represents a prediction for an unseen (unrated) data item dt,, for
the active refined query rqqq. 7gqq represents a refined query for the active user
case a for the domain d. sim(rqqq,7¢;q4) is the correlation weight for user rating
patterns of the refined queries rq,q and rq;q as defined by the Pearson Correlation
Coefficient shown in [ ). sim(C,, C;) represents the similarity between the active
case C, and a neighbor case C; as defined in [2)). NC is a set of neighbor cases
selected as similar to the active case. SD is a set of common seen (rated) items
between rqqq and rgiq. Trq,, and rpq, represent mathematical means for the
ratings of the result data items of the queries rq,q and rg¢;q, respectively.

Incremental Refined Query Specification. The active refined query can be
incrementally specified based not only on the data items rated by the active user,
but also on the data items whose rating value predicted from (B]) and (@l). That
is, the refined query can be specified by content patterns of the rated data items
and a new result set can be retrieved from a new data source set. More unseen
data items can be found from above collaborative filtering with the new search
artifacts. Thus, the refined query can be incrementally specified by aggregating
the rated and predicted data items.

At first, the value weight for each feature of the active refined query can be
found from (B)) and (@]). Then, the feature weight can be determined by () and
@) which also uses the Pearson Correlation Coefficient. This is based on an
idea that if the similarity value patterns for a criterion (feature) and the user
rating patterns are similar, the feature would be an important factor (feature)
for the user to determine his likeness on the data. Therefore, this approach also
takes into account the negative examples which have a negative feedback from
users whereas content-based filtering systems [I1][12] consider only the positive
examples to refine queries in terms of weight adjustments. Furthermore, the
negative correlation weight will become zero via the n(x) function because the
negative correlation would not necessarily mean that the user rated a data item
as an relvant one since it is dissimilar to his query in the dimension of the feature
or vice versa.

Tvvadfe
VWadfv = Maaf ) (5)

E Tvvaar
=1



28 L. Kerschberg et al.

Z Trqaq,dtm * O('Uvadflv dtm)

Tow _ meMD (6)
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where vwqqr, Tepresents the weight of the value vvggr, for a feature f,q¢ of the
query rqq.q. M D is a set of data items representing the union of the set of the
seen data items and the set of predicted unseen data items.

Tvv,q, T€Presents an average rating value for data items in the set M D hav-
ing a value vv44py. O(VVagsi, dt,) is a binary variable which represents whether
the data item dt,, has the value vvqqs, and if yes, its value is 1, otherwise
0. sim(fadk,qad) represents the correlation weight between the criterion (fea-
ture) similarity and the original and predicted user ratings for the query r¢uq.
sim( fadk, dtm) represents the similarity value between the values of the query
rqqq and the data item dt,, in terms of the dimension of the feature fgqx.

Fig. B represents an example of the feature weight adjustment using the multi-
ple weighted-valued query generated only from the positive examples via ([B]) and
(@) and increased user feedback information via the query-to-query collaborative
filtering. For the explanation purpose, the queries and data items in the example
have only binary values for each features, but the equations surely work for the
real values. The left table represents the feature vectors of the query and data
items. The right table represents similarity values of the query and data items
for each feature and rating values of the data items for the query. In this exam-
ple, the similarity value of the query and a data item for a feature is 1 if they
have same value, otherwise 0. Intuitively, the feature f,41 would be regarded as
an important criterion for which the user determines the relevance of the data
items; therefore, it would be beneficial to have a higher weight on the feature for
the efficiency of the system’s automatic rating/search process. This approach
would be advantageous for adjusting criterion weights for the systems of us-
ing the weighted/multi-valued query-based and heterogeneous types of values in
each criterion thereby requiring different metrics for evaluating the values.

The incrementally specified query can seem to degrade the prediction ratio
and efficiency of the search process because it aggregates contents of multiple
data items. However, clearly it can have better recall ratio. The prediction ratio
can be alleviated by using the weights so that the results can be automatically
rated and sorted by a similarity measure based on the weights. The efficiency
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faar | faae | faas | fags dt; | dty | dts | dty | sim(fagk,Tqad) | fWadk

dt; |1 0 1 0 sim(f,q1,dti) 1 0 1 0 4| 0.63

dt, |0 1 0 1 sim(faq2,dt;) 0 1 0 1 -4 0

dt; |1 1 1 0 sim(f,q3,dt;) 1 1 1 0 231 037

de [0 |1 |1 |0 | [sim(fusdt) 10 |1 |1 |0 0 o
| IQad | 1 0 1 0 rating(rqag,dti)) | 1 | 0 1 |0

Fig. 8. An Example of Feature Weight Adjustment

problem can be caused if the refined query has more values because the number
of data sources can be increased and some data sources do not provide multi-
valued queries so that the refined query can be translated to a number of data
source-specific queries. To address this problem, the translated queries having
higher weight values can be priorly posed to a data source with a certain degree
of parallel processing and the partial results can be shown to the users.

5 Conclusions

The Case-Based Knowledge Sifter framework expands on the original KS archi-
tecture by incorporating a novel XML-based index together with an indexing
scheme for the efficient storage and retrieval of user-query cases. A methodol-
ogy is presented for specifying, refining and processing user queries, based on a
hybrid filtering approach that combines the best aspects of both content-based
and collaborative filtering techniques.

The XML-based indexing scheme uses ontology-based concepts to index user-
query cases. This leads to efficient algorithms for associative retrieval of relevant
related cases, thereby avoiding a sequential search of the case base, as is the case
in other case-based collaborative filtering systems [I3][14] [15].
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Abstract. The aim of this paper is to analyze how the generalizations
built by a CBR method can be used as local approximations of a concept.
From this point of view, these local approximations can take a role similar
to the global approximations built by eager learning methods. Thus,
we propose that local approximations can be interpreted either as: 1) a
symbolic similitude among a set of cases, 2) a partial domain model, or
3) an explanation of the system classification. We illustrate these usages
by solving the Predictive Toxicology task.

1 Introduction

One of the main differences between eager and lazy methods used for concept
learning is that the former generalizes a set of examples and builds a global ap-
prozimation of a concept. Then, this global approximation is used for classifying
unseen examples. Instead, lazy learning methods do not explicitly generalize the
examples but they always use the complete set of examples. Thus, an unseen
problem is classified according to its similitude to a subset of known examples.
In this sense, lazy learning methods can be seen as building local approrimations
of concept [27] since the similar examples define an area around the new exam-
ple which can be taken as a general description of that area. However sometimes
the general knowledge, in the sense of global approximations of concepts, could
also be useful inside lazy learning methods. PROTOS [24], one of the early Case-
based Reasoning (CBR) systems, takes the idea of generalization commonly used
on inductive learning methods to define categories of cases and also defines ez-
emplars representing each category. Then, a new case is classified into a category
if a match can be found between an exemplar and the new case. Notice that the
exemplars play the same role as general descriptions of a class induced by some
inductive learning method. Bergmann et al [10] proposed the idea of general-
ized cases, i.e. a case does not represent a single point of the problem-solution
space but a subspace of it. The use of generalized cases can be seen as general
descriptions of parts of the problem space.

In this paper we are interested in analyzing how generalizations can be used
inside CBR. In particular, from both the literature and our experience we
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identified some usages that generalization can have in the context of CBR. Thus,
a generalization can be taken as a representative of a subset of cases as in PRO-
TOS or in the work of Bergmann et al. [I0], but also it could be interpreted as
a symbolic similitude of a subset of cases as we proposed in [5]. In addition, we
also propose the hypothesis that a set of local approximations can be seen as a
partial model of a domain. The idea is that a lazy method can produce a gener-
alization that explains the classification of a new problem, in a sense similar to
the explanations produced by ezplanation-based learning methods [28]. A set of
such explanations can be seen as a partial model of the domain since that model
is able to classify only a subset of the available cases.

The structure of this paper is the following. Firstly we briefly introduce LID
the method that we used in our experiments. LID produces a generalization that
we call similitude term and that serves as the basis for the analysis of general-
izations inside CBR. In particular, in section [3] we describe how generalizations
can be interpreted as a symbolic similitude among a subset of cases. Then, in
section [ we explain how generalizations produced by a lazy method can be
used to build a lazy model of the domain. In section Bl we describe how lazy
generalizations can be interpreted as the explanation of the classification pro-
posed by a CBR method. Finally, in section[f we describe an application domain
where we applied all the usages of generalizations we described in the previous
sections.

2 Lazy Induction of Descriptions

In this section we briefly describe a lazy learning method called Lazy Induction
of Descriptions (LID) we introduced in [5]. LID determines which are the more
relevant features of a problem p and searches in the case base for cases sharing
these relevant features. The problem p is classified when LID finds a set of relevant
features shared by a subset of cases all belonging to the same solution class C;.
Then LID classifies the problem as belonging to C; (Fig. [[). We call similitude
term the description formed by these relevant features and discriminatory set
the set of cases satisfying the similitude term. In fact, a similitude term is a
generalization of both p and the cases in the discriminatory set.

The similitude term can be interpreted in several ways. Firstly, the simili-
tude term can be seen as a partial discriminant description of C; since all the
cases satisfying the similitude term belong to C; (according to one of the stop-
ping conditions of LID). Therefore, the similitude term can be used as a gen-
eralization of knowledge in the sense of either PROTOS or inductive learning
methods. On the other hand, because the similitude term contains the impor-
tant features used to classify a problem, it can be interpreted as a justifica-
tion or explanation of why the problem has been classified in C;. Finally inside
the context of multi-agent systems, where agents collaborate for solving prob-
lems, similitude terms could be taken as the basis for both exchanging knowl-
edge and negotiation. In next sections the different usages of similitude terms is
explained.
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Fig. 1. From a description D that is satisfied by all the cases of the case base, LID
builds successive specializations of D, until finding a similitude term (D2 in this Fig.)
that only is satisfied by cases of one class

3 Generalizations as Symbolic Similitude

Similarity among cases is one of the key issues of lazy methods in general and
of CBR in particular. The usual approach to assess this similarity is by defining
similarity measures. Since features defining domain objects can have different
relevance concerning the classification task, some of these measures allow us to
to weigh the features differently. Emde and Wettscherek [16] analyzed how the
similarity measure influences the result of Instance-based Learning algorithm [IJ.

Eager learning methods induce discriminant descriptions of classes, i.e. they
build descriptions with features that are only satisfied by examples belonging to
one of the classes. For instance, an inductive learning method such as ID3 [30]
produces a decision tree where each path from the root to a leaf gives the pairs
attribute-value that are important to classify an example as belonging to a class
C;. Notice that, in fact, a path is a general and discriminant description d; of C;
that can be interpreted as a symbolic similitude among the cases in C;. In other
words, d; contains the features shared by a set of examples belonging to C;.

What is the role of the similitude term produced by LID? On one hand, LID
classifies a new problem p as belonging to a class C; because it is similar to a
subset of cases in C; that share some features that have been considered as the
most important for the classification. Therefore, in this sense the similitude term
plays the role of symbolic similitude as the paths of a decision tree. On the other
hand, because LID is a lazy method, that similitude term shows the similitude
of the particular problem p to the subset of cases belonging to C; that satisfy
the similitude term.

4 Lazy Generalizations for Building Lazy Domain Models

Lazy learning methods classify a new problem based on the similarity among
that problem and a subset of known cases. Commonly, once the system proposes
the solution, all the generalizations used to achieve the solution are rejected.
The justification of this is that any generalization is constructed based on the
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new problem. Our point is that, although these generalizations define a local
approximation to the concept defined by the new problem, they can be useful
for solving other problems inside such area. Therefore, as well as a CBR system
is solving new problems, it can store all the local approximations supporting the
classification of these problems. The set of such approximations can be seen as
a partial model of the domain. The partiality of that domain comes from the
fact that each local approximation is build from a subset of examples instead of
being a model including all the known examples as in eager learning methods.

This lazy way to build a domain model can be useful in domains such as
Predictive Toxicology [21] or some medical problems, where experts are inter-
ested in finding models about the domain. The usual tool in such domains is an
eager learning method inducing general domain knowledge. The main problem
of these approaches is that sometimes the models have to be induced from a set
of cases with high variability and the result is a set of rules that are too general
to be useful for classification. An example of a lazy construction of a domain
model is the Lazy Decision Trees (LDT) proposed by [17]. Differently from pure
eager techniques, LDT build a decision tree in a lazy way, i.e. each time that
a new problem has to be classified, the system reuses, if possible, the existing
tree. Otherwise, a new branch classifying the new problem is added to the tree.
Notice that, in fact, the decision tree represents a general model of a domain
and LDT builds it in a lazy way. The main difference between inductive learning
methods and LDT is that the former generalize from all the examples of a class
whereas the latter takes into account only the characteristics of the problem at
hand.

A similar idea is behind the method C-LID [g8]. C-LID is implemented on top of
LID by storing the similitude terms provided by LID and using them as domain
knowledge useful for solving new problems. C-LID uses two policies: the caching
policy and the reuse policy. The caching policy determines which similitude terms
(patterns) are to be retained. The reuse policy determines when and how the
cached patterns are used to solve new problems. The caching policy of C-LID
states that a similitude term D is stored when all cases covered by a pattern
belong to one class only. The reuse policy of C-LID states that patterns will be
used for solving a problem p only when LID is unable to univocally classify p.

The assumption of C-LID is that the similitude term is a partial description
of the solution class in the same sense as in inductive learning methods. Thus
the set of patterns stored by C-LID can be seen (an used) as a domain model,
even if this model is partial because it does not cover all the available examples.

5 Generalizations and Explanations

Explaining the outcome of a CBR system has been an issue of growing interest
in recent years. In 2004 was the first workshop on explanations in the framework
of the EWCBR held in Madrid [18]. The focus of this workshop was to analyze
how CBR applications from very different domain explain their result to the
user. Then, in 2005 Roth-Berghofer and his colleagues organized an international
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workshop in the framework of the AAAT conference [9] with the same focus: to
analyze different forms to explain the results. In the latter workshop the scope
was not only CBR but authors participating in it coming from very different
fields.

Focusing on CBR, in particular in recommender systems, the most common
form of explanation is to show the user the set of cases that the system has
assessed as the most similar to the new case at hand. Nevertheless some authors
agree that in some situations this may not be a good explanation. For instance,
McSherry [26] argues that the most similar case (in addition to the features that
have been taken as relevant for selecting that case) also has features that could
act as arguments against that case. For this reason, McSherry proposes that
the explanation of a CBR system has to explicitly distinguish between the case
features in favor of an outcome and the case features against it. In this way,
the user could decide about the final solution of the problem. A related idea,
proposed in [25], is to use the differences among cases to support the user in
understanding why some cases do not satisfy some requirements.

Explanations had received attention from the early rule-based systems, that
explained the result by showing the user the chain of rules that produce the so-
lution. Inductive learning methods can also explain their results by showing the
general descriptions satisfied by the new problem. The explanation of a decision
tree outcome could be formed by showing the conditions satisfied in the path
from the root to a leaf used to classify a new problem. Fzplanation-based learn-
ing (EBL) [28] is a family of methods that build explanations by generalizing
examples. In short, EBL solves a problem and then analyzes the problem solving
trace in order to generalize it. The generalized trace is an ezplanation that, in
fact, is used as a new domain rule for solving new problems. This explanation is
represented using the same formalism as the problems, therefore it is perfectly
understandable and usable by the system. In other words, the generalization of
the process followed for solving a problem has been taken as explanation of the
result and can be also used for solving future problems. Conceptually similar is
the use that [8] makes of the similitude terms given by LID. The similitude term
can be seen as a justification of the classification given by LID since it contains
all the aspects considered as relevant to classify an example.

An explanation scheme for CBR based on the concept of least general gen-
eralization was introduced in [9]. The relation more general than (>4) forms a
lattice over a generalization language G. Using the relation >, we can define
the least general generalization or anti-unification of a collection of descriptions
(either generalizations or instances) as follows:

such that (g >4 d1) A ... A (g >4 di) and not exists (¢’ >,

- AU(dl,. dp) =g
A (g >4 )buchthatg>gg

dy) A

In other words the anti-unification g of a set of descriptions is the most specific
generalization of these descriptions in the sense that there is no other generaliza-
tion ¢’ of all these descriptions that is more specific than g. The anti-unification is
a description composed of all the properties shared by the descriptions. Therefore,
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the anti-unification can be seen as a symbolic description of the similarity among
these descriptions.

Thus, descriptions resulting from the anti-unification of a collection of cases
can be used to provide explanation of the classification of a new problem in
CBR systems. Let us explain in more detail the explanation scheme based on
the anti-unification concept we introduced in [9].

Let C be the set of cases that have been considered as the most similar to a
problem p. For the sake of simplicity we assume that there are only two solution
classes: C; C C'and Cy C C (C = C1UC>). The explanation scheme is composed
of three descriptions:

— AU™: the anti-unification of p with all the cases in C. This description shows
what aspects of the problem are shared by all the compounds in C, i.e. cases
in C are similar to p because they have in common what is described in AU™.

— AUj: the anti-unification of p with the cases in C7. This description shows
what has ¢ in common with the cases in Cj.

— AU,: the anti-unification of p with the cases in C5. This description shows
what has p in common with the cases in Cs.

Thus the explanation of why a case p is in a class C; is given by what p
shares with the retrieved cases in that class. In other words, the anti-unification
AU(cy...ck,p) is an explanation of why the cases in C are similar to p, since
it is a description of all that is shared among the retrieved cases and the new
problem. Section [6.4] shows an example of ow this explanation scheme is used on
the Predictive Toxicology task.

In the next section we explain in detail an application on Predictive Toxicol-
ogy, where all the usages of generalizations explained in the previous sections
have been applied.

6 A Case Study: Predictive Toxicology

In this section we explain the approach we introduced to solve the predictive
toxicology task, i.e. to assess the carcinogenic activity of chemical compounds.
This is a complex problem that most approaches try to solve using machine
learning methods. The goal of these approaches is to build a general model of
carcinogenesis from both domain knowledge and examples of carcinogen and non-
carcinogen chemical compounds. Because these general models give not enough
predictivity, we take a completely different vision of the problem. Our idea is
that the low predictivity of the induced models is due to the high variability
of the chemical compounds that produces overgeneralizations. Thus, we decided
to take a lazy approach and to consider that the goal is to classify a chemical
compound as carcinogen or non-carcinogen. Therefore all the efforts have to
focus on the features allowing the classification of the chemical compound at
hand. In other words, we do not try to build a general model of carcinogenesis
as ML techniques do but we only try to classify a particular chemical compound.
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Nevertheless, we benefit from the classification of that compound to build some
patterns of carcinogenesis.

In the next sections we explain how we solved the problem. First we describe
the predictive toxicology problem and a new representation of chemical com-
pounds using feature terms. Then we describe how C-LID can be used as a lazy
problem solving method but also as a form to build some domain knowledge.
Finally, we detail how the system can explain the results to a chemist by means
of the explanation scheme introduced in section

6.1 The Toxicology Domain

Every year thousands of new chemicals are introduced in the market for their
use in products such as drugs, foods, pesticides, cosmetics, etc. Although these
new chemicals are widely analyzed before commercialization, the effects of many
of them on human health are not totally known. In 1973 the European Commis-
sion started a long term program consisting of the design and development of
toxicology and ecotoxicology chemical databases. The main idea of this program
was to establish lists of chemicals and methods for testing their risks on people
and the environment. Similarly, in 1978 the American Department of Health
and Human Services established the National Toxicology Program (NTP) with
the aim of coordinating toxicological testing programs and developing standard
methods to detect potentially carcinogenic compounds (see more information
in www.ntp-server.niehs.nih.gov). When a chemical compound is suspected to be
toxic, it is included in the NTP list in order to perform standardized experiments
to determine its toxicity degree.

The use of computational methods applied to the toxicology field could con-
tribute to reduce the cost of experimental procedures. In particular, artificial
intelligence techniques such as knowledge discovery and machine learning (ML)
can be used for building models of compound toxicity (see [20] for a survey).

6.2 Representation of Chemical Compounds

Predictive toxicology is a complex task for ML techniques. There is no ML tech-
nique providing excellent results [21], a likely explanation is that the current
representation of chemical compounds is not adequate. The usual representa-
tion of chemical compounds is using structure-activity relationship (SAR) de-
scriptors coming from commercial tools from drug design such as CODESSA
[22], TSAR (Oxford molecular products, www.accelrys.com/chem/), DRAGON
(www.disat.inimib.it/chm/Dragon.htm). By means of these descriptors a natural
way to represent a chemical compound is as a set of attribute value pairs (propo-
sitional representation). A challenge on Predictive Toxicology held in 2001 [21]
was focused on ML techniques and most contributions proposed a relational rep-
resentation based on SAR descriptors and used inductive techniques for solving
the classification task. Moreover the relational representation and the ILP tech-
niques also allow the representation and use of chemical background knowledge.

Other approaches to represent chemical compounds have been proposed. For
instance [T4UT9/T2] represent the compounds as labeled graphs and this allows
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— saturated [ methane, pentane, hexane, heptane, ....
hydrocarbon

unsaturated

monocycle [ benzene, furane, ...
organic-compound | ring system

polycycle [ anthracene, xantene, naphthalene, ...

O-compound [ alcohol, ether, ester,...

functional grou
- group N-compound [ amine, amide, nitro-derivate, ...

P-compound [ phosphite, phosphorothioate, ...

S-compound [ thiol, thione, thiourea, ...

Fig. 2. Partial view of the chemical ontology

the use of graph search algorithms for detecting frequent substructures of the
molecules in the same class. Particularly interesting are SUBDUE [12] and
SMILES [35] that follow this approach. A completely different approach was
introduced in [II] where the compounds are organized according to their active
centers (chemically identified with weak bonds).

The representation of chemical compounds we propose is based on the chemi-
cal terminology, i.e the IUPAC (International Union of Pure and Applied Chem-
istry) nomenclature (www.chem.gmul.ac.uk/iupac/). Also we take into account
the experience of previous research (specially the works in [I9I5|IT]) since we
represent a chemical compound as a structure with substructures. Our point
is that there is no need to describe in detail the properties of individual atom
properties in a molecule (like some relational representations based on SAR do)
when the domain ontology has a characterization for the type of that molecule.
For instance, the benzene is an aromatic ring composed by six carbon atoms with
some well-known properties. While SAR models would represent a given com-
pound as having six carbon atoms related together (forming an aromatic ring),
in our approach we simply state that the compound is a benzene (abstracting
away the details and properties of individual atoms).

Figure 2 shows a partial view of the chemical ontology we used for repre-
senting the compounds in the Toxicology data set. This ontology is based on
the chemical nomenclature which, in turn, is a systematic way of describing the
molecular structure of chemical compounds. In fact, the name of a molecule using
the standard nomenclature, provides chemists with all the information needed
to graphically represent its structure. According to the chemical nomenclature
rules, the name of a compound is usually formed in the following way: radicals’
names + main group. Commonly, the main group is the part of the molecule
that is either the largest or that is located in a central position; however, there is
no general rule to establish them. Radicals are groups of atoms usually smaller
than the main group. A main group can have several radicals and a radical can,
in turn, have a new set of radicals. Any group of atoms could be a main group
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[ compound
main-group = benzene
[ position-radical
position = one
radicals = 7compound . ]
L main-group = alcohol
M position-radical
position = two
[ compound
main-group = amine

TR-339 =
p-radicals =
radicals =

M position-radical
position = four
compound ]

radicals = - . .
main-group = mnitro-deriv

Fig. 3. Representation of the 2-amino-4-nitrophenol, with feature terms

or a radical depending on their position or relevance on the molecule, i.e. the
benzene may be the main group in one compound and a radical in some other
compounds.

Figure[Bshows the representation of the chemical compound, 2-amino-4-nitro-
phenol, using feature terms [4]. The 2-amino-4-nitrophenol has a benzene as its
main group and a set of three radicals: an alcohol in position one; an amine
in position two; and a nitro-deriv in position four. Notice that this information
directly comes from the chemical name of the compound following the nomen-
clature rules. This kind of description has the advantage of being very close to
the representation that an expert has of a molecule from the chemical name.

6.3 Assessing Carcinogenic Activity to Chemical Compounds

Inductive learning techniques applied to the Predictive Toxicology try to extract
general rules describing the cases in each class. These kinds of techniques have
some difficulties in dealing with domains, like toxicology, where entities are sub-
ject to high variability. The goal of predictive toxicology is to develop models
able to predict whether or not a chemical compound is carcinogen. The con-
struction of these models using inductive learning methods takes into account
the toxicity observed in some molecules to extract theories about the carcino-
genecity on families of molecules. Early systems focused on predictive toxicology
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were DEREK [31] and CASE [23]. PROGOL [34] was the first ILP program used
to induce SAR models. PROGOL’s results were very encouraging since the final
rules were more understandable than those obtained using the other methods.

Lazy learning techniques, on the other hand, are based on the retrieval of
a set of solved problems similar to a specific problem. Several authors use the
concept of similarity between chemical compounds: HazardExpert [13] is an ex-
pert system that evaluates the similarity of two molecules based on the number
of common substructures; Sello [32] also uses the concept of similarity but the
representation of the compounds is based on the energy of the molecules.

We conducted a series of experiments focused on the use of lazy learning
techniques for classifying chemical compounds. In [7] we report the results of
using the k-nearest neighbor (k-NN') algorithm with Shaud as similarity measure.
Results of these experiments show that our approach is comparable to results
produced by inductive methods in terms of both accuracy and ROC analysis. We
want to remark that our approach only handles information about the molecular
structure of the chemical compounds whereas the other approaches use more
information (SAR descriptors).

Clearly, in Predictive Toxicology the classification of a particular chemical
compound its important, nevertheless, experts are also interested in finding a
general model of carcinogenesis. In this sense, we think the use of C-LID can
satisfy these expert’s interests. On one hand it can classify a chemical com-
pound and also justify this classification; on the other hand, it can produce
general knowledge about carcinogenesis thanks to the similitude term. Thus, we
conducted some experiments with a main goal: to build a (partial) model of car-
cinogenesis using C-LID. These experiments are composed of two steps: 1) using
LID with the leave-one-out in order to generate similitude terms for classifying
the cases; and 2) select a subset of these similitude terms to build a partial car-
cinogenesis model. We consider that the model is partial because given a class,
we can only assure that the similitude term generated by LID is satisfied by a
subset of compounds of that class. The idea behind these experiments comes
from the observation of the similitude terms given by LID to justify the classifi-
cation of a chemical compound (step 1). By analyzing these similitude terms we
note that some of them are given several times and that they are good descrip-
tions of carcinogen (or non-carcinogen) compound. This means that there are
some features (those included in the similitude terms) that are good descriptors
of a class since they are often used to classify compounds as belonging to that
class. consequently, they can be used by C-LID as general domain knowledge for
assessing the carcinogenic activity of new chemical compounds (step 2).

In [6] we report some domain knowledge contained in the carcinogenesis model
built thanks to the similitude terms of LID and that have been successfully used
by C-LID for predecting the carcinogenesis of unseen chemical compounds. Some
of the patterns detecting positive toxicity are also reported in the literature. For
instance, LID founds that compounds with a radical chlorine are carcinogenic and
Brautbar (www.expertnetwork.com/med2.htm) describes some experiments con-
firming the toxicity of chlorinated hydrocarbons. Nevertheless, there are other
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patterns whose positive carcinogenic activity is not clearly reported in the lit-
erature. An example of this are the chemical compounds with the polycycle
anthracene. An analysis of the chemical compounds with anthracene included in
the data set of the NTP shows that they are positive in rats, nevertheless there
are no laboratory experiments confirming this result, even there are reports ex-
plaining that anthracene is a molecule with a high tendency to make associations
with other molecules and these associations could easily be carcinogenic. Other
patterns included in the partial domain knowledge built by C-LID concern the
carcinogenecity of chemical compounds containing epozydes, bromine and long
carbon chains. Some of these patterns are confirmed by the experimental knowl-
edge, therefore they could be directly included as rules of a model. Nevertheless,
because C-LID is lazy it can include in the model some knowledge that is not
general enough to be induced but that is true for a known subset of compounds
(like the case of the long chains of carbons).

6.4 The Explanation Scheme

A common situation in toxicology is that chemical compounds with similar
molecular structure have different carcinogenic activity. Therefore, the use of
lazy learning methods, based on the similarity among structures of the com-
pounds, can produce non univocal classifications. That is to say, a chemical
compound can share some structural aspects with carcinogen compounds but
it can also also share other aspects with no carcinogen compounds. Let C' be
the set of chemical compounds that have been considered by a lazy learning
method (say k-NN) as the most similar to a compound c. Let C*t C C be the
subset of positive (carcinogen) compounds and C~ C C the subset of negative
(non-carcinogenic) compounds (C' = C*T U C™). In such situation the final pre-
diction about the carcinogenic activity of ¢ is taken using the majority rule, i.e.
the compound is classified as belonging to the same class as the majority of the
compounds in C. The application of the majority rule seems appropriate when
there is a ”clear” majority of compounds belonging to one of the classes. Never-
theless this is not always the case, consequently the result has to be explained
to the user. In fact, more important than the classification should be to show
the user the similitude that the compound has with compounds of both classes.
In other words, if the user can analyze by themself the reasons that explain the
classification of the compound in each one of the classes, then s/he could decide
the final classification of the compound.

Let us illustrate the complete explanation scheme with an example. The right
hand side of Fig. [ shows a chemical compound, namely C-356, for which we
want to assess its carcinogenicity for male rats. The set C of retrieved cases
(retrieval set), formed by five chemical compounds considered the most similar
to C-356 is also shown on the right hand side of Fig. @l The set C is divided
in C~ = {C-424, C-171} and Ct = {C-084, C-127, C-142} according to the
carcinogenic activity of the compounds.

Following our approach, the explanation scheme (left hand side of Fig. d) for
chemical compound C-356 is as follows:
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Fig.4. AU™ is the chemical structure common to all the compounds in Fig. ??. AU is
the chemical structure common to C-356 and the negative compounds (i.e. C-424 and
C-171). AU™ is the chemical structure common to C-356 and the positive compounds
(i.e. C-084, C-127 and C-142).

— The description AU* shows that C-356 and the compounds in C' have in
common that they are all benzenes with at least three radicals: one of these
radicals is a functional group derived from the oxygen (i.e. an alcohol, an
ether or an acid) called O-compound in the figure; another radical (called
radl in the figure) is in the position next to the functional group (chemically
this means that both radicals are in disposition ortho). Finally, there is a
third radical (called rad2 in the figure) that is in no specific position.

— The description AU~ shows that C-356 and the chemical compounds in
C™ have in common that they are benzenes with three radicals: one radical
derived from an oxygen (O-compound), a radical rad! with another radical
(rad3 in the figure) in position ortho with the O-compound, and finally a
third radical (rad2) with no specific position.

— The description AU™ shows that C-856 and the chemical compounds in C*
have in common that they are benzenes with three radicals: one of the rad-
icals is derived from an oxygen (O-compound), another radical is an amine
(N Hy) in position ortho with the O-compound, and a third radical (rad?) is
at distance 3 of the O-compound (